Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Lancet Respir Med ; 11(5): 453-464, 2023 05.
Article in English | MEDLINE | ID: covidwho-2249489

ABSTRACT

BACKGROUND: Interpretation of the evidence from randomised controlled trials (RCTs) of remdesivir in patients treated in hospital for COVID-19 is conflicting. We aimed to assess the benefits and harms of remdesivir compared with placebo or usual care in these patients, and whether treatment effects differed between prespecified patient subgroups. METHODS: For this systematic review and meta-analysis, we searched PubMed, Embase, the Cochrane COVID-19 trial registry, ClinicalTrials.gov, the International Clinical Trials Registry Platform, and preprint servers from Jan 1, 2020, until April 11, 2022, for RCTs of remdesivir in adult patients hospitalised with COVID-19, and contacted the authors of eligible trials to request individual patient data. The primary outcome was all-cause mortality at day 28 after randomisation. We used multivariable hierarchical regression-adjusting for respiratory support, age, and enrollment period-to investigate effect modifiers. This study was registered with PROSPERO, CRD42021257134. FINDINGS: Our search identified 857 records, yielding nine RCTs eligible for inclusion. Of these nine eligible RCTs, individual data were provided for eight, covering 10 480 patients hospitalised with COVID-19 (99% of such patients included in such RCTs worldwide) recruited between Feb 6, 2020, and April 1, 2021. Within 28 days of randomisation, 662 (12·5%) of 5317 patients assigned to remdesivir and 706 (14·1%) of 5005 patients assigned to no remdesivir died (adjusted odds ratio [aOR] 0·88, 95% CI 0·78-1·00, p=0·045). We found evidence for a credible subgroup effect according to respiratory support at baseline (pinteraction=0·019). Of patients who were ventilated-including those who received high-flow oxygen-253 (30·0%) of 844 patients assigned to remdesivir died compared with 241 (28·5%) of 846 patients assigned to no remdesivir (aOR 1·10 [0·88-1·38]; low-certainty evidence). Of patients who received no oxygen or low-flow oxygen, 409 (9·1%) of 4473 patients assigned to remdesivir died compared with 465 (11·2%) of 4159 patients assigned to no remdesivir (0·80 [0·70-0·93]; high-certainty evidence). No credible subgroup effect was found for time to start of remdesivir after symptom onset, age, presence of comorbidities, enrolment period, or corticosteroid use. Remdesivir did not increase the frequency of severe or serious adverse events. INTERPRETATION: This individual patient data meta-analysis showed that remdesivir reduced mortality in patients hospitalised with COVID-19 who required no or conventional oxygen support, but was underpowered to evaluate patients who were ventilated when receiving remdesivir. The effect size of remdesivir in patients with more respiratory support or acquired immunity and the cost-effectiveness of remdesivir remain to be further elucidated. FUNDING: EU-RESPONSE.


Subject(s)
COVID-19 , Adult , Humans , COVID-19 Drug Treatment
2.
Br J Clin Pharmacol ; 89(4): 1318-1328, 2023 04.
Article in English | MEDLINE | ID: covidwho-2213501

ABSTRACT

Setting-up a high quality, compliant and efficient pharmacovigilance (PV) system in multi-country clinical trials can be more challenging for academic sponsors than for companies. To ensure the safety of all participants in academic studies and that the PV system fulfils all regulations, we set up a centralized PV system that allows sponsors to delegate work on PV. This initiative was put in practice by our Inserm-ANRS MIE PV department in two distinct multinational European consortia with 19 participating countries: conect4children (c4c) for paediatrics research and EU-Response for Covid-19 platform trials. The centralized PV system consists of some key procedures to harmonize the complex safety processes, creation of a local safety officer (LSO) network and centralization of all safety activities. The key procedures described the safety management plan for each trial and how tasks were shared and delegated between all stakeholders. Processing of serious adverse events (SAEs) in a unique database guaranteed the full control of the safety data and continuous evaluation of the risk-benefit ratio. The LSO network participated in efficient regulatory compliance across multiple countries. In total, there were 1312 SAEs in EU-Response and 83 SAEs in c4c in the four trials. We present here the lessons learnt from our experience in four clinical trials. We managed heterogeneous European local requirements and implemented efficient communication with all trial teams. Our approach builds capacity for PV that can be used by multiple academic sponsors.


Subject(s)
COVID-19 , Pharmacovigilance , Humans , Child , Risk Assessment , Databases, Factual
4.
J Intern Med ; 291(6): 801-812, 2022 06.
Article in English | MEDLINE | ID: covidwho-1714240

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory infection, mounting evidence suggests that the gastrointestinal tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and are related to long-term respiratory dysfunction remains unknown. METHODS: Plasma was collected during hospital admission and after 3 months from the NOR-Solidarity trial (n = 181) and analyzed for markers of gut barrier dysfunction and inflammation. At the 3-month follow-up, pulmonary function was assessed by measuring the diffusing capacity of the lungs for carbon monoxide (DLCO ). Rectal swabs for gut microbiota analyses were collected (n = 97) and analyzed by sequencing the 16S rRNA gene. RESULTS: Gut microbiota diversity was reduced in COVID-19 patients with respiratory dysfunction, defined as DLCO below the lower limit of normal 3 months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced relative abundance of 20 bacterial taxa and increased abundance of five taxa, including Veillonella, potentially linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2 /fiO2 (P/F ratio) <26.6 kPa. LBP levels remained elevated during and after hospitalization and were associated with low-grade inflammation and respiratory dysfunction after 3 months. CONCLUSION: Respiratory dysfunction after COVID-19 is associated with altered gut microbiota and persistently elevated LBP levels. Our results should be regarded as hypothesis generating, pointing to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , COVID-19/complications , Clinical Trials as Topic , Humans , Inflammation , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
6.
Ann Intern Med ; 174(9): 1261-1269, 2021 09.
Article in English | MEDLINE | ID: covidwho-1547664

ABSTRACT

BACKGROUND: New treatment modalities are urgently needed for patients with COVID-19. The World Health Organization (WHO) Solidarity trial showed no effect of remdesivir or hydroxychloroquine (HCQ) on mortality, but the antiviral effects of these drugs are not known. OBJECTIVE: To evaluate the effects of remdesivir and HCQ on all-cause, in-hospital mortality; the degree of respiratory failure and inflammation; and viral clearance in the oropharynx. DESIGN: NOR-Solidarity is an independent, add-on, randomized controlled trial to the WHO Solidarity trial that included biobanking and 3 months of clinical follow-up (ClinicalTrials.gov: NCT04321616). SETTING: 23 hospitals in Norway. PATIENTS: Eligible patients were adults hospitalized with confirmed SARS-CoV-2 infection. INTERVENTION: Between 28 March and 4 October 2020, a total of 185 patients were randomly assigned and 181 were included in the full analysis set. Patients received remdesivir (n = 42), HCQ (n = 52), or standard of care (SoC) (n = 87). MEASUREMENTS: In addition to the primary end point of WHO Solidarity, study-specific outcomes were viral clearance in oropharyngeal specimens, the degree of respiratory failure, and inflammatory variables. RESULTS: No significant differences were seen between treatment groups in mortality during hospitalization. There was a marked decrease in SARS-CoV-2 load in the oropharynx during the first week overall, with similar decreases and 10-day viral loads among the remdesivir, HCQ, and SoC groups. Remdesivir and HCQ did not affect the degree of respiratory failure or inflammatory variables in plasma or serum. The lack of antiviral effect was not associated with symptom duration, level of viral load, degree of inflammation, or presence of antibodies against SARS-CoV-2 at hospital admittance. LIMITATION: The trial had no placebo group. CONCLUSION: Neither remdesivir nor HCQ affected viral clearance in hospitalized patients with COVID-19. PRIMARY FUNDING SOURCE: National Clinical Therapy Research in the Specialist Health Services, Norway.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Hydroxychloroquine/therapeutic use , Viral Load/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , Cause of Death , Female , Hospital Mortality , Humans , Inflammation/virology , Male , Middle Aged , Norway/epidemiology , Oropharynx/virology , Respiratory Insufficiency/virology , SARS-CoV-2/immunology , Severity of Illness Index , Standard of Care , Treatment Outcome
7.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545647

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
10.
Nat Commun ; 11(1): 5284, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-882895

ABSTRACT

Here, we randomized 53 patients hospitalized with coronavirus disease 2019 (COVID-19) to hydroxychloroquine therapy (at a dose of 400 mg twice daily for seven days) in addition to standard care or standard care alone (ClinicalTrials.gov Identifier, NCT04316377). All severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients 18 years of age or older were eligible for study inclusion if they had moderately severe COVID-19 at admission. Treatment with hydroxychloroquine did not result in a significantly greater rate of decline in SARS-CoV-2 oropharyngeal viral load compared to standard care alone during the first five days. Our results suggest no important antiviral effect of hydroxychloroquine in humans infected with SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Aged , COVID-19 , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2 , Treatment Outcome , Viral Load/drug effects , COVID-19 Drug Treatment
11.
Trials ; 21(1): 485, 2020 Jun 05.
Article in English | MEDLINE | ID: covidwho-617180

ABSTRACT

OBJECTIVES: The hypothesis of the study is that treatment with hydroxychloroquine sulphate in hospitalised patients with coronavirus disease 2019 (Covid-19) is safe and will accelerate the virological clearance rate for patients with moderately severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) when compared to standard care. Furthermore, we hypothesize that early treatment with hydroxychloroquine sulphate is associated with more rapid resolve of clinical symptoms as assessed by the National Early Warning Score 2 (NEWS2), decreased admission rate to intensive care units and mortality, and improvement in protein biomarker profiles (C-reactive protein, markers of renal and hepatic injury, and established cardiac biomarkers like cardiac troponin and B-type natriuretic peptide). TRIAL DESIGN: The study is a two-arm, open label, pragmatic randomised controlled group sequential adaptive trial designed to assess the effect on viral loads and clinical outcome of hydroxychloroquine sulphate therapy in addition to standard care compared to standard care alone in patients with established Covid-19. By utilizing resources already paid for by the hospitals (physicians and nurses in daily clinical practice), this pragmatic trial can include a larger number of patients over a short period of time and at a lower cost than studies utilizing traditional randomized controlled trial designs with an external study organization. The pragmatic approach will enable swift initiation of randomisation and allocation to treatment. PARTICIPANTS: Patients will be recruited from all inpatients at Akershus University Hospital, Lørenskog, Norway. Electronic real-time surveillance of laboratory reports from the Department of Microbiology will be examined regularly for SARS-CoV-2 positive subjects. All of the following conditions must apply to the prospective patient at screening prior to inclusion: (1) Hospitalisation; (2) Adults 18 years or older; (3) Moderately severe Covid-19 disease (NEWS2 of 6 or less); (4) SARS-CoV-2 positive nasopharyngeal swab; (5) Expected time of hospitalisation > 48 hours; and (6) Signed informed consent must be obtained and documented according to Good Clinical Practice guidelines of the International Conference on Harmonization, and national/local regulations. Patients will be excluded from participation in the study if they meet any of the following criteria: (1) Requiring intensive care unit admission at screening; (2) History of psoriasis; (3) Known adverse reaction to hydroxychloroquine sulphate; (4) Pregnancy; or (5) Prolonged corrected QT interval (>450 ms). Clinical data, including standard hospital biochemistry, medical therapy, vital signs, NEWS2, and microbiology results (including blood culture results and reverse transcriptase polymerase chain reaction [RT-PCR] for other upper airway viruses), will be automatically extracted from the hospital electronic records and merged with the study specific database. INTERVENTION AND COMPARATOR: Included patients will be randomised in a 1:1 ratio to (1) standard care with the addition of 400 mg hydroxychloroquine sulphate (PlaquenilTM) twice daily for seven days or (2) standard care alone. MAIN OUTCOMES: The primary endpoint of the study is the rate of decline in SARS-CoV-2 viral load in oropharyngeal samples as assessed by RT-PCR in samples collected at baseline, 48 and 96 hours after randomization and administration of drug for the intervention arm. Secondary endpoints include change in NEWS2 at 96 hours after randomisation, admission to intensive care unit, mortality (in-hospital, and at 30 and 90 days), duration of hospital admission, clinical status on a 7-point ordinal scale 14 days after randomization ([1] Death [2] Hospitalised, on invasive mechanical ventilation or extracorporeal membrane oxygenation [3] Hospitalised, on non-invasive ventilation or high flow oxygen devices [4] Hospitalized, requiring supplemental oxygen [5] Hospitalised, not requiring supplemental oxygen [6] Not hospitalized, but unable to resume normal activities [7] Not hospitalised, with resumption of normal activities), and improvement in protein biomarker profiles (C-reactive protein, markers of renal and hepatic injury, and established cardiac biomarkers like cardiac troponin and B-type natriuretic peptide) at 96 hours after randomization. RANDOMISATION: Eligible patients will be allocated in a 1:1 ratio, using a computer randomisation procedure. The allocation sequence has been prepared by an independent statistician. BLINDING (MASKING): Open label randomised controlled pragmatic trial without blinding, no active or placebo control. The virologist assessing viral load in the oropharyngeal samples and the statistician responsible for analysis of the data will be blinded to the treatment allocation for the statistical analyses. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): This is a group sequential adaptive trial where analyses are planned after 51, 101, 151 and 202 completed patients, with a maximum sample size of 202 patients (101 patients allocated to intervention and standard care and 101 patients allocated to standard care alone). TRIAL STATUS: Protocol version 1.3 (March 26, 2020). Recruitment of first patient on March 26, 2020, and 51 patients were included as per April 28, 2020. Study recruitment is anticipated to be completed by July 2020. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT04316377. Trial registered March 20, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Pragmatic Clinical Trials as Topic , COVID-19 , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Norway , Pandemics , Pneumonia, Viral/virology , Research Design , SARS-CoV-2 , Viral Load , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL